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Introduction 
 
SkyFoundry has invested 10 years of development in the SkySpark software platform. It is uniquely 
designed from the ground up for the realities of IoT applications in the “Built Environment” and has 
been proven in deployments across more than 1 Billion sq. ft of facilities worldwide (> 92 Million 
square meters). 
 
When helping customers with a detailed technical evaluation of SkySpark, we are often asked 
questions about some of the core technologies that are the foundation of SkySpark. This document 
provides insight into those technologies and the rationale for their selection and/or development. 
 
 

Fantom – The Language SkySpark is Written In 
 
Fantom (https://fantom.org/) is an open source developed, portable language that runs on the JVM 
and in modern web browsers. It features a familiar Java-like syntax, static (and dynamic) typing, 
elegant system library, closures, immutability, actor concurrency, and much more. It's design 
constructs and features make it highly suited to applications in control, automation and IoT 
applications for the built environment. 
 

• Fantom provides 100% portability between Java (server) and JavaScript (browser) 
• Fantom provides first class function support (partially available in Java 8, but still no true 

function types) 
• Fantom provides true immutable types (still not supported by any mainstream language) 
• Fantom provides actor concurrency model 
• Future portability to new runtimes such as WASM WebAssembly - https://webassembly.org/  
• SkySpark's code base was started in 2008 (twelve years ago) and features like those listed 

above were considered essential to achieving a data-centric platform for automation 
applications.  

 
Note: When comparing to other potential development languages it’s useful to note that Java 8 
was not released until 2014 (four years after SkySpark 1.0 was released) 
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Folio – The Database at the Core of SkySpark 
 
There are many databases available, each with advantages and disadvantages for different types of 
applications and data. Developers will find that the features of conventional time-series or relational 
databases are not adequate to achieve an effective solution for IoT data applications. SkySpark’s 
Folio database is designed specifically to address the unique needs of collecting, storing, 
transforming and performing analytics on IoT device data. Folio accomplishes this by seamlessly 
integrating three database design concepts into one database: 
 

1. Semantics, which includes techniques from both document and graph databases, along with 
a query/inference engine. This ability to capture descriptive information about the data – it’s 
meaning and the relationships between the data and the devices that produce it is fundamental 
to IoT data applications. 
  

2. Real-time - sensor data updating in microseconds 
 

3. Time-series data historian 
 
Folio employs techniques from ontological data science to store rich semantic data about the built 
environment.  It combines concepts from document and graph databases, along with an inference 
engine you might find in RDF databases.  Folio leverages Project Haystack as the core ontology, 
although it's easy for customers to extend this model to their systems. 
 
Folio integrates real-time sensor data with microsecond update times so that data from BACnet, 
Modbus, etc. can be seamlessly blended into the semantic model. Folio’s industrial strength 
process historian enables it to store and process time series data values efficiently. Folio’s blending 
of these design concepts creates a database technology optimized for the efficient storage, 
transformation and analytics of device data, including real time data. 
  

• Folio is built to store data grids (dicts); utilizing document-oriented database techniques. 
(Note: SkySpark follows the Haystack standard for dicts) 

• Built for efficient graph traversal (by this we mean representing and identifying relationships 
between data items) 

• Ontology inference engine to provide deep semantics 
• Fully integrated transient data for microsecond real-time updates 
• Fully integrated process historian for time-series data 
• Just In Time (JIT) self-tuning for automatic indexing 
• Replication designed specifically for the needs of IoT applications 
• Highly efficient data compression – saves disk space, and cost  

 

The following section provides additional information on Folio, its design and performance. 
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What is a Time Series Database? 

 
One of the pivotal features of SkySpark is our time series database, sometimes called a process 
historian or simply a historian. Many different people are curious about what a time series database 
is and why we developed our own database technology. In this article I'm going to dive into some 
of the key design patterns used by the SkySpark historian and why it provides such high-speed 
performance. 
 
Anything that stores data keyed by timestamps could be called a time series database. In SkySpark 
we are specifically talking about sensor data which is typically timestamp samples of an analog or 
digital sensor, setpoint, or command. For example, if we have a sensor sampling a zone 
temperature every 15min, then the data stream would look something like: 
 

2011-07-20T12:00-04:00 New_York  72.1°F 
2011-07-20T12:15-04:00 New_York  72.3°F 
2011-07-20T12:30-04:00 New_York  72.3°F 
2011-07-20T12:45-04:00 New_York  72.4°F 
2011-07-20T13:00-04:00 New_York  72.2°F 

 

Characteristics of a Time Series Database 
 
There are some characteristics of time series sensor data which are important to observe: 
 

• High resolution data can yield an immense volume of timestamp/value pairs. If we store 
minutely data, we have 525,600 samples per year. 100,000 points with two years of 
minutely data is 105 billion samples! Although that isn't actually an extremely large system, 
a traditional database with 100 billion rows would be considered a really big database. So 
efficient storage and access these types of data volume is a top priority 

• Time series data is virtually almost always "append only". Once data is stored, we rarely 
change it, but we are always adding newly acquired timestamp samples 

• Time series data is always accessed by a time range: we want to query data by year, month, 
week, day, date range, etc. 

• Time series data queries must always be sorted: we almost always want to analyze or view 
data in temporal order 

• We often wish to work with "rolled up" aggregations of the data; for example, if working 
with years’ worth of 15min energy data we might only care about total daily or monthly 
energy usage 

• If working with data which spans time zones, then proper handling of time zones is critical. 
Most analysis of time series data is done in the context of local time (for example comparing 
energy/equipment use against occupancy times) 
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Problems with Relational Databases When Applied to  
Sensor and Device Time-Series Data 
 
A common technique is to store time series data in an off the shelf RDBMS like MySql, MS-SQL, etc. 
But the problem with these general-purpose databases is they make trade-offs which are extremely 
un-optimized for the characteristics described above. They are designed for random access updates 
versus a stream of append only data. And without an explicit index on the tables, a RDBMS makes 
no guarantees about indexing a time range or reading the data in sorted order. 
 
Consider what happens under the covers when you query a relational database for a single week of 
data in a table which stores several years of data. Without an index the entire data set has be read 
off disk, the predicate tested to see if each timestamp matches the filter, and then the data has to 
be sorted in memory. 
 
If you setup indexing on your tables, then the size of your data on disk explodes! Most relational 
databases use a general-purpose b-tree structure to index a table. If you have a table with billions 
of rows, the overhead to maintain the index can quickly add up. For this type of data, the index can 
exceed the disk size of the data itself. 
 
The other major problem with an RDBMS is that they are designed to query the data in one 
process, then move all the data over a network connection to another process for computation. If 
you want to compute monthly roll-ups for years’ worth of data, that can be a huge amount of data 
to pass over the network before computation can even begin. So, let's look at the techniques 
SkySpark uses to optimize this problem: 

 

Storage 
In SkySpark we store data to disk so that it is always indexed by timestamp and always sorted by 
timestamp. The way we store data means we can index the data by timestamp with virtually no 
additional indexing overhead. Furthermore, we can utilize the fact that we store samples to disk in 
temporal order to our advantage by applying a bunch of compression techniques. A typical RDBMS 
without any indexing is probably going to require at least 12 bytes to store a timestamp and 32-bit 
floating value. If you add overhead for indexing, then this size might double or triple. In SkySpark 
this same data is stored with an average of 12 bits (1.5 bytes). We've seen customers switch from a 
relational database to SkySpark and achieve an order of magnitude in disk space savings. Efficient 
storage of each timestamp/value sample really matters when we are talking about billions of 
samples. 
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Read Performance  
When you query a specific time range in SkySpark we know a) where to begin reading from disk 
and b) that we are reading sorted data straight from disk. And because we have compressed data 
we are often reading fewer bytes from disk. Since disk access is orders of magnitude slower than 
RAM access, the number of blocks read from disk before you can start crunching your data is the #1 
issue in how well your database performs. In SkySpark we don't spend any time reading index 
information from disk and we don't have to perform any sorting in memory. 
So how fast can we read data? Even on my run-of-the-mill machine and disk drive I consistently get 
benchmarks for querying 800,000 samples/sec. To crunch a year's worth of 15 minutely data is only 
30ms! 
 

Write Performance 
SkySpark takes advantage of the fact that most writes to a time-series database are at the end of 
the time stream. We constantly collect new sensor data and might be writing new data for 100,000 
points every minute. SkySpark optimizes for this case and avoids the costly techniques of journaling, 
log files, and b-tree updates as required by a general-purpose RDBMS. 
 
Note that since the data must be sorted to disk, there can be a performance impact if attempting to 
write data with timestamps which occur interleaved with data already stored to disk (SkySpark 
provides a warning when this happens). 
 
Under the covers we use Fantom's actor concurrency model to effectively utilize all the cores of the 
microprocessor to pre-sort, coalesce, and sanitize the data. The overall result is that SkySpark's 
historian can typically write data to disk far faster than a general-purpose database. 
 
So how fast can we write? On my run-of-the-mill machine, benchmarking yields write rates of 
250,000 samples/sec. If working with 15min data, that equates to writing seven years of data every 
second. 
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Colocation of Computation 
 
The architecture of SkySpark is designed around the idea that the database engine and 
computation engine must be co-located in the same OS process. The key observation is that often 
we wish to crunch large volumes of time series data to compute small answers. Examples: find the 
total energy consumption for each month, find the day where we had our peak demand in 2010, 
find periods of time where a sensor exceeded a given limit. 

In a relational database, the SQL language is used to query the data. But SQL is not a general-
purpose language for analyzing and transforming data. So, one must use SQL to query the raw 
data, move it over the network to another process, and then crunch the data using a programming 
environment like Java, C#, etc. The problem with this approach is that you might have to query 
millions of rows of data over the network just to compute a single number. To work around the 
inevitable performance problems, developers try to pre-compute these "rollup" versions of the 
data. But this is a stop-gap solution that doesn't work for ad hoc general analytics because there is 
an infinite number of ways, we might want to crunch the raw data. 

In SkySpark our database and the Axon computation engine are bundled together in the same 
server. We've designed Axon to be an expressive query language, but also a full-fledged general-
purpose programming language. Let's consider a simple example where we want to query the 
monthly consumption of energy data for the entire year of 2010 using raw 15 minutely data: 

readAll(kwh).hisRead(2010).hisRollup(sum, 1mo) 

This expression is evaluated by Axon as follows: read all the records with the kwh tag, pipe that to 
the hisRead function to read all the raw 15 minutely data for the entire year of 2010, and then pipe 
that to the hisRollup function to compute the monthly interval sum of the raw data. This entire 
calculation is executed as the data is read off disk. There is no buffering of raw data in memory, nor 
are we required to pass any data over a network connection. The design for pipe-lining the 
computation as we read off disk is a key enabler for SkySpark’s high-performance analytics of time 
series data. 

We hope this overview helps explain how the Folio database addresses the challenges of storing 
and processing analytics on device data. 
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Axon – The Scripting Language Optimized for Analytics of  
Sensor and Device Data 
 
The unique characteristics and requirements of working with device data extend to the process of 
defining and coding analytic rules and algorithms. SkySpark implements a language called Axon 
that is optimized to address these needs. The Axon language underlies all of SkySpark – it is the 
language used to define analytic rules and algorithms, it is used to create automated “jobs” that 
acquire and process and transform data from external sources and to query the Folio database to 
create reports and views. 
 
Key characteristics of Axon include: 
 

• Extremely simple language (grammar fits on one page). This enables developers to quickly 
gain competence 

• (Mostly) pure functional language – functional languages are the most effective solution for 
applications that focus on data transformations, which is the core function of analytics. 
Examples: Transform raw data to patterns (Sparks), transform raw data into KPIs, rollups and 
other calculations. 

• The Axon language designed to manipulate data grids (see Folio section of this document). 
To do this it shares the same literal syntax as Haystack. For example, Haystack data graphs are 
valid in Axon which is the same data type/model for representing data in Folio. Example: 
Numbers stored in Folio always have units as part of the data, and functions to 
query/transform numbers always work with the units without requiring additional coding by 
programmers.  

• True immutability for all data values – this is a key benefit when working with device data, 
meaning it never changes the original data as it calculates results. It goes hand in hand with 
effective data transformation. This makes Axon dramatically easier to debug and understand 
program logic. It also makes it easier to do parallel processing with multiple threads/cores. 

• Requires sandboxed environment for security – Everything SkySpark does in the UI and 
analytic rules are Axon calls. Because Axon is sandboxed users cannot perform system level 
calls, and cannot penetrate the security boundary of the Axon engine – For example, they 
can’t access passwords, etc. 

• Integrated components syntax. As a custom language Axon provides a first-class syntax for 
Haystack filters and also for building functional components. 

• Querying data inside Axon uses Axon itself versus requiring a separate syntax.  And with a 
built-in component syntax, developers can build packaged rules with predefined bindings and 
tuning parameters. 

 

We hope this document helps enhance the understanding of SkySpark’s foundational technologies. 
Contact us to learn more at info@skyfoundry.com  
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ABOUT SKYFOUNDRY 
 
SkyFoundry’s mission is to provide software solutions 
for the age of “the Internet of things”. Areas of focus 
include:  
 
• Building automation and facility management 
• Energy management, utility data analytics 
• Remote device and equipment monitoring 
• Asset management 
 
SkyFoundry products help customers derive value 
from their investments in smart systems. Contact us 
to learn more. 
 
https://skyfoundry.com/ 
 
info@skyfoundry.com  

 

 


